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ABSTRACT

The point-feature cartographic label placement problem (PFCLP) consists in placing text labels 
adjacent to point features on a map. This paper proposes a 0-1 integer linear programming model 
for the PFCLP defined as the maximum number of free labels placed where all points must be 
labeled.  We also present  a  Lagrangean decomposition technique based on graph partitioning 
where  the  PFCLP is  represented by a  conflict  graph  and  partitioned into  clusters.  After  the 
partitioning phase, some variables are copied to reduce de number of inter-clusters edges and the 
equality  constraints  associated  to  those  variables  copied  are  relaxed  in  a  Lagrangean  way. 
Computational  experiments  for  sets  of  25 instances  with up to 1000 points showed that  our 
Lagrangean decomposition provides good solutions better than CPLEX and the ones reported in 
the literature. We optimally solved all instances up to 750 points and the optimal was proven for 
5 instances with 1000 points.

KEYWORDS. Label  Placement.  Linear  Programming.  Lagrangean  Decomposition. 
Combinatorial Optimization.

1. Introduction
Label  placement  problems  appear  in  several  situations  like  in  cartographic  maps  or  in 

medical image analysis (Nascimento and Eades, 2008). They can be defined as follows: given a 
set of graphical features, such as points, we must place text labels adjacent to them identifying 
each one once at most. However, we can have, for each feature, an explicit enumerated list of 
candidate positions for the text label (discrete approach), or we can slide the text label around of 
each feature until finding the best position to place it (slider approach). In both cases, the text 
labels must be placed avoiding overlaps.

Basically, graphical features can be points, lines or polygons. For example, in a map, cities 
are represented by points, roadways by lines and states by polygons (areas). There are different 
approaches for each kind of feature.

The major problem in map labeling is that one with points known in the literature by point-
feature cartographic label placement (PFCLP) (Klau and Mutzel, 2003). A good review about 
approaches for problems with lines or areas can be found at the “Map-Labeling Bibliography 
Web Site”  (Wolff  and Strijk,  1996),  where  we can see  an illustrative  chart  of  map labeling 
publications over the last 50 years.
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In PFCLP the overlapping labels may be accepted or not. When overlaps are not accepted, 
we may attempt to either label a maximum number of points or determine the largest possible 
font  size  such  that  all  points  can  be  labeled.  These  problems  are  known  as  Label  Number 
Maximization Problem (LNMP) and Label  Size Maximization Problem (LSMP),  respectively 
(Nascimento and Eades, 2008; Klau and Mutzel, 2003).

In  the  LNMP,  some  features  cannot  receive  their  labels.  This  problem  is  generally 
represented by a conflict graph where each node represents a candidate position for a label and 
each edge a potential conflict (overlap) between two candidate positions. Now, considering its 
objective (label number maximization), this problem can be seen as the traditional Maximum 
Independent Set Problem (MISP) (Strijk et al, 2000; Zoraster, 1990).

When overlaps are accepted,  all  points must  be labeled and scaling is  not  allowed.  Two 
problems are identified, the Maximum Number of Conflict Free Labels Problem (MNCFLP) and 
the  Minimum  Number  of  Conflicts  Problem (MNCP).  The  MNCFLP  (Ribeiro  and  Lorena, 
2008b) is also known by Label Overlap Minimization Problem (Klau, 2002) and by Number of 
Labels  Obstructed  by  at  Least  One  Other  Label  (Christensen  et  al,  1995).  The  MNCP  was 
recently presented by Ribeiro and Lorena (2008a,b) and their approach “spreads” the overlaps 
minimizing conflicts (edges) between candidate positions.

In this paper we concentrate on the MNCFLP with discrete positions, presenting a new 0-1 
optimization model for it that to the best of our knowledge is the first model for this approach. 
Commercial solvers have difficulties for solving the MNCFLP large-scale instances available in 
the literature. So, we also present a Lagrangean decomposition that has generated good feasible 
solutions, outperforming recent results reported in the literature.

The remaining of the paper is organized as follows. Section 2 presents a brief review of 
PFCLP approaches. The proposed model  and the Lagrangean decomposition are described in 
Sections 3 and 4,  respectively.  Computational  experiments  are reported in Section 5 and the 
conclusions are summarized in Section 6.

2. Literature review of the PFCLP with discrete candidate positions
The PFCLP is an optimization problem shown to be NP-hard (Formann and Wagner, 1991; 

Marks and Shieber, 1991). Exact approaches are limited to solve only small instances (Strijk et 
al, 2000; Zoraster, 1990), therefore heuristics and metaheuristics have been proposed.

Many approaches, exact or not, have their solution strategies based on conflict graphs. Let N 
be the number of points to be labeled and  Pi a set of discrete positions for the label of point  i 
(candidate  positions).  A  conflict  graph  for  PFCLP  can  be  defined  by  G=(V, E),  where 
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and  }, and :),{( ,,,, tiVvvvvE utjiutji ≠∈=  a  set  of  potential  conflicts  (overlaps)  between 
candidate positions. For a good review about conflict graphs, see Atamtürk et al (2000).

For  PFCLP  with  discrete  candidate  positions,  Christensen  et  al  (1995)  have  proposed  a 
cartographic pattern (see Figure 1), where each position has a number to indicates a cartographic 
preference. In Figure 1, position 1 is the most suitable, i.e., the lower number indicates the best 
position. Starting from this pattern, the PFCLP can be defined as the problem of assigning the 
labels to one of its available candidate positions subject to conflict constraints and minimizing or 
maximizing an objective function.
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Figure 1: Cartographic pattern proposed by Christensen et al (1995).
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Considering a problem with 2 points and 4 candidate positions for each one, we can get a 
conflict graph as presented in Figure 2 where dashed edges indicate conflicts between candidate 
positions of different points.  The proportion of conflict  free labels assesses the quality of the 
labeling (Strijk et al, 2000; Christensen et al 1995; Yamamoto et al, 2002). So, if the labels are 
placed in positions 1,1 and 2,1, this is a good labeling with all labels free.

1,11,2

1,3 1,4

2,12,2

2,3 2,4

1,11,2

1,41,3

2,12,2

2,42,3

1,11,2

1,3 1,4

2,12,2

2,3 2,4

1,11,2

1,41,3

2,12,2

2,42,3

Figure 2: Example of a conflict graph (Ribeiro and Lorena, 2008b).

Considering the PFCLP as a Maximum Independent Set Problem (MISP), many researches 
are reported in the literature. But in the mathematical models field, Zoraster (1990) and Strijk et 
al (2000) have presented interesting contributions. Zoraster (1990) formulated mathematically the 
PFCLP working with conflict  constraints  and dummy candidate positions of  high cost  if  the 
points  could not  be  labeled.  He  also proposed a  Lagrangean relaxation for  the  problem and 
obtained  some  computational  results  on  small-scale  instances.  Strijk  et  al  (2000)  proposed 
mathematical  formulations  based  on  the  so-called  clique  inequalities  (Padberg,  1973), 
implementing a branch-and-cut algorithm, and testing several heuristics such as Tabu Search and 
Simulated Annealing. The authors used instances up to 950 points with 4 candidate positions.

Now if we look at the PFCLP as a MNCFLP, many researchers proposed heuristics and 
metaheuristics. Christensen et al (1995) presented a good review about the PFCLP and proposed 
a  local  search  technique  based  on  a  discrete  form of  the  gradient  descent  and  a  Simulated 
Annealing algorithm. Verner et al (1997) applied a Genetic Algorithm with mask such that if a 
label is in conflict, the changing of positions is allowed by crossover operators. Yamamoto et al 
(2002)  proposed a  Tabu Search  algorithm while  Yamamoto  and  Lorena (2005)  developed a 
Constructive Genetic Algorithm and applied it to a set of large-scale instances.

Recently,  Alvim  and  Taillard  (2009)  presented  a  POPMUSIC  frame  for  the  PFCLP. 
POPMUSIC (Partial Optimization Metaheuristic Under Special Intensification Conditions) was 
proposed by Taillard and Voss (2001) and its basic idea consists in locally optimizing sub-parts 
of a solution, once a solution of the problem is available. The local optimizations are repeated 
until no improvements are found. For the local optimizations, the authors implemented a new 
version of the Tabu Search proposed by Yamamoto et al (2002).

Alvim and Taillard (2009) have applied POPMUSIC to instances proposed in the literature 
by Yamamoto et al (2002) and to real instances obtained from Switzerland road network. The 
POPMUSIC have presented good solutions, better than other approaches, in small computational 
times.

Finally,  looking  PFCLP  as  MNCP  point  of  view,  Ribeiro  and  Lorena  (2006,  2008b) 
introduced this approach to minimize the number of conflicts (edges in the remaining conflict 
graph). The authors have proposed two 0-1 optimization models and a Lagrangean heuristic. 
Regarding  the  optimization  models,  the  one  proposed  in  Ribeiro  and  Lorena (2008b)  has  a 
smaller number of constraints.

Considering that the conflict graph can be large and that it can become hard to deal with it, 
Wagner et al (2001) presented an approach to reduce it. They proposed three rules to reduce the 
graph size without altering the set of optimal solutions. For the MNCFLP, the following rules are 
applicable:
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• Rule 1: If a point p has a candidate position pi without any conflicts, declare pi to be part 
of the solution, and eliminate all other candidate positions of p;

• Rule 2: If a point  p has a candidate position pi that is only in conflict with a candidate 
position qk, and q has a candidate position qj (j ≠ k) that is only overlapped by candidate 
position  pl (l ≠ i), then add  pi and  qj to the solution and eliminate all other candidate 
positions of p and q;

• Rule  3:  If  p has  only  one  candidate  position  pi left,  and  the  candidate  positions 
overlapping pi form a clique, then declare pi to be part of the solution and eliminate all 
candidate positions that overlap pi.

These  rules  are  applied  exhaustively.  After  eliminating  a  candidate  pi,  we  must  check 
recursively whether the rules can be applied in the neighborhood of pi.

For  more  details  and  algorithms,  see  the  “Map-Labeling  Bibliography  Web  Site”  at 
http://i11www.iti.uni-karlsruhe.de/~awolff/map-labeling/bibliography/.

3. The proposed model
In  this  section  we  propose  a  0-1  integer  linear  programming  model  for  the  PFCLP  as 

MNCFLP, i.e., fixed label sizes, discrete positions for the labels, all points must be labeled and 
we are looking for the maximum number of conflict free labels.

Let xi,j be a binary variable to represent the candidate position j of the point i for all i ∈ {1,
…,N} and j ∈ Pi. If xi,j = 1 the label of point i must be placed at position j, and xi,j = 0 otherwise. 
For each candidate position of point i is associated a profit represented by wi,j. Now let Si,j be a set 
of pairs itut ≠:),(  composed of candidate positions xt,u that present potential conflicts with xi,j. 
Thus, the MNCFLP 0-1 optimization model is:

MNCFLP: v(MNCFLP) = Maximize:

∑∑ ∑
== ∈

−
N

i
i

N

i Pj
jiji zxw

i 11
,, (1)

Subject to:
Nix

iPj
ji ,...,11, =∀=∑

∈
 (2)

            jiiiutji SuttiPjNizxx ,,, ),(;;;,...,11 ∈≠∈∀=∀≤−+ (3)

jiiiutji SutPjNizxx ,,, ),(;;,...,1}1,0{,, ∈∈∀=∀∈  (4)

When the binary variable zi = 1, it means that some candidate position is overlapping point i, 
zi =  0, otherwise.  Constraints (2) ensure that each point  i must be labeled, i.e., some candidate 
position xi,j must be equal to 1. Constraints (3) ensure the correct assignment to variables z when 
overlaps (conflicts) are inevitable and constraints (4) impose binary variables. Constraints (2) can 
also be seen as “conflicts” but between candidate positions of the same point.

The overlapping variables  zi appear subtracting in the objective function to be maximized 
which should seek for solutions with zero value for these variables.

Model (1)-(4) is  similar  to the one proposed by Zoraster (1990) and Ribeiro and Lorena 
(2008a) but it allows allocating all labels maximizing the number of conflict free labels. Figure 
3(a) presents a conflict graph with respective constraints (3) in Figure 3(b).

Thus, if x1,4 = x2,1 = 1 the label of point 1 is overlapped by the label of point 2, consequently 
point 1, represented by z1, is overlapped by point 2; and point 2, represented by z2, is overlapped 
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by point  1.  Finally,  z1 =  z2 = 1  (ensured by constraint  3  presented in  Figure 3(b))  therefore 
indicating two overlapped labels or “overlapped points”.

x1,1x1,2

x1,4x1,3

x2,1

x2,2

x2,4x2,3

x3,1x3,2

x3,4
x3,3

x1,4 + x2,1 – z1 ≤ 1
x1,4 + x3,3 – z1 ≤ 1
x2,1 + x1,4 – z2 ≤ 1
x2,1 + x3,3 – z2 ≤ 1
x3,3 + x1,4 – z3 ≤ 1
x3,3 + x2,1 – z3 ≤ 1

(a) (b)

x1,1x1,2

x1,4x1,3

x2,1

x2,2

x2,4x2,3

x3,1x3,2

x3,4
x3,3

x1,1x1,2

x1,4x1,3

x2,1

x2,2

x2,4x2,3

x3,1x3,2

x3,4
x3,3

x1,4 + x2,1 – z1 ≤ 1
x1,4 + x3,3 – z1 ≤ 1
x2,1 + x1,4 – z2 ≤ 1
x2,1 + x3,3 – z2 ≤ 1
x3,3 + x1,4 – z3 ≤ 1
x3,3 + x2,1 – z3 ≤ 1

(a) (b)
Figure 3: Conflict graph and conflict constraints for the MNCFLP model.

The objective  function maximizes  the  number  of  conflict  free  labels  and the sum of the 
variables xi,j (Equation 1), ignoring the cartographic preferences wi,j, will be always equal to the 
total number of points (ensured by Constraints 2). The number of overlapped labels will be given 
by the sum of variables z. Therefore, ignoring the cartographic preferences (considering all wi,j = 
1, for example), the value for the objective function will be exactly the number of conflict free 
labels.

4. Lagrangean decomposition
The Lagrangean decomposition is a special case of Lagrangean relaxation that consists of 

partitioning  the  original  problem into  several  sub-problems  creating  a  copy of  the  decision 
variables  in  each  one  of  the  generated  sub-problems.  These  “clones”  are  used  in  the  sub-
problems’ constraints  and new constraints  ensure the equality between them and the original 
variables.  Thus,  the Lagrangean decomposition appears when we relax in a Lagrangean way 
these new constraints (Chardaire and Sutter, 1995; Guignard, 2003). Therefore, it is important to 
copy variables as little as possible to reduce the number of new constraints.

For the MNCFLP model  (1)-(4),  the conflict graph  G will  be partitioned into  m (m ≤  N) 
clusters of vertices with V = V1 ∪ V2 ∪ ... ∪ Vm, and Vi ∩ Vj = ∅, ∀ i,j ∈ {1,…,m} forming sub-
graphs Gk = (Vk,  Ek) ∀ k = 1,...,m. Now, let  Xk = V – Vk be a set of the vertices not included in 
cluster k and Ck be the set of copied variables on cluster k. Figure 4 below is used to describe our 
Lagrangean decomposition.

To copy variables as little as possible, the graph partitioning phase is a challenge. But for the 
conflict graph provided by  MNCFLP, we can use the technique of vertices contraction which 
consists on grouping all  candidate positions of the same point  i forming a single vertex (see 
Figure  4(b)).  In  Figure  4  the  squares  and  circles  indicate  the  points  to  be  labeled  and  the 
candidate positions, respectively. 

The contraction of vertices generates a conflict  graph  G  between points and not between 
candidate  positions.  Therefore,  the  graph partitioning between points  generates  sub-problems 
(Figure  4(c))  where  conflicts  between  candidate  positions  of  the  same  point  are  maintained 
(constraint 2) resulting in a stronger relaxation for the PFCLP.

After  the partitioning  of  G, the  contractions  are  expanded (Figure  4(d))  resulting  in  the 
original conflict graph with the inter-cluster edges (dashed edges on Figure 4(d)) and the sub-
problems (clusters 1 and 2).

Now, we must determine which binary variables (vertices) must be copied. A good strategy 
is proposed by Sachdeva (2004) that copies vertices with the greatest number of inter-clusters 
edges. After copying some vertex, the approach redefines the number of inter-clusters edges and 
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a new vertex is selected to be copied. This process is repeated until all the necessary copies are 
carried out, i.e., all the edges inter-clusters are eliminated.

Cluster 1 Cluster 2

(a) (b) (c)

Graph partitioning with
METIS

Cluster 1 Cluster 2

(d)

Cluster 1 Cluster 2

(e)

Cluster 1 Cluster 2

(f)

Cluster 1 Cluster 2

(a) (b) (c)

Graph partitioning with
METIS

Cluster 1 Cluster 2

(d)

Cluster 1 Cluster 2

(e)

Cluster 1 Cluster 2

(f)

Figure 4: Graph decomposition for the PFCLP.

As shown in Figure 4(e),  the first  vertex copied presents three inter-clusters edges (black 
vertex is a copy of the gray one). The simple copy of the gray vertex to cluster 1 removes three 
inter-cluster edges. The process is repeated and finished in Figure 4(f), leaving two independent 
clusters. Now ensuring the equality between copies (black vertices) and original (gray vertices) 
variables, the problem is decomposed into two clusters. Thus, the MNCFLP decomposition into 
m (m ≤ N) clusters can be described as follows:

MNCFLPm: v(MNCFLPm) = Maximize:

∑ ∑∑
= ∈∈







−

m

k Vji
i

Vji
jiji

kk

zxw
1 ),(),(

,, (5)

Subject to:
mkVix k

Pj
ji

i

,...,1;1, =∈∀=∑
∈
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mkSCutVjizxx jikk
k
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k
utji ,...,1;),(;),(1 ,,, =∩∈∈∀≤−+   (9)

mkXCutxx kk
k

utut ,...,1;),(,, =∩∈∀= (10)

mkXCutzz kk
k
tt ,...,1;),( =∩∈∀= (11)

mkCVutVjizxzzxx kkk
k
t

k
uttiutji ,...,1;),(;),(}1,0{,,,,, ,,, =∪∈∈∀∈ (12)

Variables xk
t,u and zk

t represent, respectively, the copies of xt,u and zt into cluster k. The copies 
are not considered in the objective function, i.e., their coefficients are zero. Constraints (6) and 
(7)  deal  only  with  the  edges  whose  vertices  are  internal  to  each  cluster  (sub-problem)  k. 
Constraints (8) and (9) indicate the edges whose vertices are in different clusters (inter-clusters 
edges) and constraints (10) and (11) ensure the equality between original and copy variables.
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Relaxing  constraints  (10)  and  (11)  in  a  Lagrangean  way  with  vectors  of  unrestricted 
Lagrangean multipliers α and β, the problem MNCFLPm (indirectly the MNCFLP) can be divided 
into m independent sub-problems. Each sub-problem k can be defined as follows:

LDαβMNCFLPk: v(LDαβMNCFLPk) = Maximize:

( ) ( ) k
t

Cut

k
ti

Vji kd
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Finally,  the  MNCFLP relaxation in  m sub-problems is  given by expression (19)  and the 
corresponding Lagrangean dual is presented in expression (20).

LDαβMNCFLPm:      v(LDαβMNCFLPm)  = ∑
=

m

k
kMNCFLPLDv

1

)( α β (19)

DLDαβMNCFLPm:  v(DLDαβMNCFLPm) = )}({
 ,

m

edunrestrict
MNCFLPLDv α ββα

Min        (20)

Now, we have m small and independent sub-problems that can be solved by a commercial 
solver. Consequently, a subgradient algorithm can be implemented to manage these sub-problems 
and to update the multipliers and the step size.

For our computational tests, we have used CPLEX 10.0.1 (Ilog, 2006) for solving the sub-
problems and the heuristic METIS (Karypis and Kumar, 1998) for graph partitioning task that, 
according to Warrier et al (2005), presents good results on minimizing the number of edges with 
endings in different clusters.

We have implemented a subgradient algorithm to solve the Lagrangean dual (20) based on 
the one proposed by Narciso and Lorena (1999). Our algorithm is similar to the one proposed by 
Held and Karp (1970) and it updates the Lagrangean multipliers considering step sizes based on 
the relaxed solutions and the feasible solutions obtained with a Lagrangean heuristic (Figure 5).

The heuristic shown in Figure 5 is a greedy heuristic that verifies the better changing of 
candidate positions to generate an improved feasible solution. Firstly (lines 6 to 10) the solution 
obtained by the relaxation in  m sub-problems is mounted. The candidate position selected for 
each point i is verified on lines 15 to 19 and changed for all the other ones (lines 20 to 34). A new 
candidate position is stored if a better solution is obtained, and otherwise the change is discarded 
(lines 31 and 32). This procedure is repeated for all the points (lines 14 to 35). The whole process 
is repeated when a better solution is found (lines 12 to 40).

5. Computational experiments
Several computational experiments were performed to evaluate our mathematical model and 

our Lagrangean decomposition, considering a set of randomly generated instances with 100, 250, 
500, 750 and 1000 points proposed by Yamamoto et al (2002). These instances have been used in 
several  works  about  PFCLP (see  Section  2)  and  are  available  at 
http://www.lac.inpe.br/~lorena/instancias.html. The Lagrangean decomposition was implemented 
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in C++ and the experiments performed on a PC with Pentium Dual Core of 1.73 GHz with 1GB 
of RAM memory.

LAGRANGEAN HEURISTIC
1. xi,j

*: value for xi,j on integer solution (viable);
2. xi,j: value for xi,j on sub-problem for vertex (i,j);
3. p: selected candidate position;
4. r: candidate position selected before the best 

change;
5. q: candidate position selected after the best change;
6. FOR   i  1 TO N DO
7. FOR   all j ∈ Pi DO
8. xi,j

*  xi,j;
9. END-FOR  ;
10. END-FOR  ;
11. fo*  COMPUTE (the objective function value);
12. DO  
13. improve  false;
14. FOR   i  1 TO N DO
15. FOR   all j ∈ Pi DO
16. IF   (xi,j

* = 1) THEN
17. p  j;
18. END-IF  ;
19. END-FOR  ;
20. FOR   all j ∈ Pi DO
21. IF   (j ≠ p) THEN
22. xi,p  0;
23. xi,j  1;
24. fo = COMPUTE (the objective function value);
25. IF   (fo > fo*) THEN
26. r  p;
27. q  j;
28. fo*  fo;
29. improve  true;
30. END-IF  ;
31. xi,p  1;
32. xi,j  0;
33. END-IF  ;
34. END-FOR  ;
35. END-FOR  ;
36. IF   (improve) THEN
37. xi,r

*  0;
38. xi,q

*  1;
39. END-IF  ;
40. WHILE   (improve);

Figure 5: Lagrangean heuristic for the MNCFLP.

As considered in Zoraster (1990), Christensen et al (1995), Ribeiro and Lorena (2008a,b), 
Verner et al (1997), Yamamoto and Lorena (2005), Alvim and Taillard (2009) and others, the 
cartographic preferences were not considered (wi,j = 1) for all candidate positions, and the total 
number  of  candidate  positions  was  equal  to  4  (Pi =  {1,2,3,4}  ∀i =  1,…,N).  The  reduction 
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heuristic proposed by Wagner et al (2001) was used to reduce the initial conflict graph, i.e., the 
conflict  graph (problem)  was reduced before we apply the METIS heuristic.  However let  us 
mention that Rule 3 is not applied in our computational experiments.

Tables 1 and 2 present the results for the instances with 750 and 1000 points, respectively. 
Both CPLEX and our Lagrangean decomposition presented optimal solutions in a computational 
time inferior to 3 seconds for the instances with 100, 250, and 500 points (99.68% of conflict free 
labels for the instances with 500 points and 100% for 100 and 250 points).

In Tables 1 and 2, m indicates the number of clusters used; LB and UB indicate the upper and 
lower  bounds  found,  respectively;  Gap  indicates  the  difference  between  LB  and  UB  (

100)( ×−=
LB

LBUBGap );  Time shows the total  processing time and the last  line presents the 

arithmetic  average  to  each  column;  N is  the  number  of  points  obtained  after  the  reduction 
heuristic proposed by Wagner et  al  (2001);  The number  m was estimated based on the ones 
reported by Ribeiro and Lorena (2008a).

Table 1: Results for instances with 750 points.

Inst. N
DLDαβMNCFLPCm CPLEX

m LB UB Gap Time (s) LB UB Gap Time (s)
1 425 10 739* 739 0 1.10 739 741.83 0.38 44.67
2 427 10 736* 736 0 1.71 735 744.46 1.29 2033.56
3 395 10 731* 731 0 32.18 730 743.55 1.86 8957.94
4 393 10 741* 741 0 1.66 741 742.00 0.13 10.69
5 370 10 739* 739 0 1.38 739 743.78 0.65 143.73
6 407 10 730* 730 0 22.82 730 743.50 1.85 15210.70
7 421 10 737* 737 0 2.44 737 742.00 0.68 70.05
8 414 10 736* 736 0 1.49 736 743.02 0.95 1913.95
9 395 10 726* 726 0 8.62 724 744.67 2.85 5183.67
10 382 10 743* 743 0 40.23 743* 743.00 0 2.13
11 395 10 733* 733 0 2.65 732 744.00 1.64 2992.88
12 382 10 734* 734 0 1.87 733 742.50 1.30 20.08
13 373 10 743* 743 0 2.08 743* 743.00 0 1.94
14 398 10 728* 728 0 5.15 728 743.58 2.14 8911.52
15 406 10 730* 730 0 32.56 728 744.25 2.23 15095.80
16 401 10 729* 729 0 396.10 729 744.00 2.06 11111.20
17 367 10 729* 729 0 6.77 728 744.62 2.28 10142.30
18 407 10 737* 737 0 1.69 737 742.67 0.77 154.44
19 407 10 740* 740 0 3.59 740 742.50 0.34 9.97
20 422 10 737* 737 0 2.91 737 742.67 0.77 81.36
21 447 10 731* 731 0 19.91 731 744.67 1.87 7324.94
22 378 10 744* 744 0 0.91 744* 744.00 0 3.00
23 422 10 731* 731 0 3.90 731 742.00 1.50 36.77
24 422 10 732* 732 0 8.33 732 744.40 1.69 5569.06
25 398 10 732* 732 0 5.73 732 743.33 1.55 13494.50

Avg. 402.16 10 734.72 734.72 0 24.31 734.36 743.36 1.23 7139.64
* The optimal was proven.

Table  1  presents  the  results  obtained  for  instances  with  750  points.  Our  Lagrangean 
decomposition found the optimal solutions for all the instances with an average computational 
time of 24.31 seconds. CPLEX presented an average residual gap of 1.23% proving optimality 
for only 3 of the 25 instances (see instances with asterisk) with an average time of 7139.64 
seconds.  Our  Lagrangean decomposition found 97.96% of  conflict  free  labels  while  CPLEX 
found 97.91% (Equation 21).
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100 (%) labels  free Conflicts ×=
N
LB

(21)

The  results  obtained  for  the  instances  with  1000  points  are  reported  in  Table  2.  Our 
Lagrangean  decomposition  has  proved optimality  for  5  of  the  25  instances  with  an  average 
residual gap of 0.48%. CPLEX cannot prove the optimality for any instance and has presented a 
gap  of  10.64%.  Our  Lagrangean  decomposition  times  are  in  magnitude  similar  to  the  ones 
provided by CPLEX. Our Lagrangean decomposition provided 93.74% of conflict  free labels 
while CPLEX found 90.13%.

Table 2: Results for instances with 1000 points.

Inst. N
DLDαβMNCFLPCm CPLEX

m LB UB Gap Time (s) LB UB Gap Time (s)
1 757 25 939* 939.98 0.10 1348.90 918 995.27 8.42 8234.54
2 742 25 933 939.62 0.71 14407.07 892 996.56 11.72 7944.66
3 720 20 934* 934.00 0 2751.70 911 994.81 9.20 8010.25
4 749 40 929 939.90 1.17 14456.49 882 996.94 13.03 7675.42
5 732 15 960 962.33 0.24 14414.26 945 997.00 5.50 7585.55
6 702 20 932* 932.92 0.10 1400.71 920 995.42 8.20 8165.56
7 729 25 928 931.99 0.43 14419.30 897 996.92 11.14 8102.22
8 731 20 940 942.21 0.24 14419.89 908 998.33 9.95 8037.76
9 701 20 923 930.32 0.79 15144.10 893 996.08 11.54 8074.16
10 733 20 943 946.48 0.37 14704.62 901 997.14 10.67 8220.80
11 744 25 947* 947.90 0.10 3334.22 938 995.41 6.12 7889.20
12 728 25 934 936.44 0.26 14564.28 903 996.22 10.32 7858.28
13 680 25 954 956.03 0.21 14529.87 928 997.00 7.44 7549.22
14 743 25 930 941.15 1.20 14529.70 897 996.15 11.05 8154.78
15 756 25 932 937.00 0.54 16453.17 904 994.85 10.05 8148.46
16 707 25 928 936.01 0.86 14452.63 876 997.17 13.83 8223.61
17 671 25 937 939.63 0.28 14467.97 929 996.75 7.29 8105.20
18 734 25 946 947.27 0.13 14509.09 923 995.75 7.88 7927.24
19 708 25 950 953.25 0.34 15264.32 842 996.83 18.39 8724.84
20 724 25 929 945.84 1.81 14419.34 909 997.00 9.68 7910.86
21 749 25 928 932.22 0.45 14436.28 842 997.75 18.50 8219.96
22 694 25 952 955.41 0.36 14406.28 928 997.25 7.46 8141.83
23 723 25 933 940.23 0.77 14611.45 853 995.39 16.69 8516.06
24 722 25 929 934.39 0.58 14463.91 877 995.25 13.48 8664.67
25 712 25 945* 945.70 0.07 3513.24 917 995.50 8.56 8181.32

Avg. 723.64 24.20 937.40 941.93 0.48 12216.91 901.32 996.35 10.64 8090.66
* The optimal was proven.

Table 3 shows a comparison among the conflict free labels proportion obtained by a set of 
the  main  works  about  the  MNCFLP.  We  can  observe  that  our  Lagrangean  decomposition 
presents  better  results  proving  the  optimality  for  several  instances.  We  also  note  a  slight 
improvement among the methods found in the literature detaching the improvements presented 
by our Lagrangean decomposition.

The average computational times were not reported on Table 3 due to the diversity of the 
computers used. However, we can note that our computational times (see Tables 1 and 2) are 
higher. This fact is acceptable because we consider exact methods to solve the MNCFLP.

6. Conclusions
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In the literature,  we can note a  tough dispute for  the  best  solutions  to  the  Point-Feature 
Cartographic  Label  Placement  Problems  (see  Section 2).  However,  most  of  the  methods  are 
based on heuristics and metaheuristics that do not allow us to verify how near the solution is from 
the optimal one, mainly when PFCLP is modeled according to the maximum number of conflict 
free labels approach.

This paper has presented a new 0-1 integer linear programming model to the MNCFLP. A 
method based on Lagrangean decomposition presented tight gaps for a set of instances up to 1000 
points. The decomposition method has proved the optimality for several instances of the literature 
for the first time, with gaps smaller than the ones found by CPLEX. In addition, we believe that 
our Lagrangean decomposition is an interesting tool for solving problems represented by conflict 
graphs.

Table 3: Comparison with the literature: proportion (%) of conflict free labels.

Methods Points
250 500 750 1000

DLDαβMNCFLPCm 100.00* 99.68* 97.96* 93.74
CPLEX with the proposed model MNCFLP 100.00* 99.68* 97.91 90.13
Pop(asc) (Alvim and Taillard, 2009) 100.00 99.67 97.72 92.68
Pop(10) (Alvim and Taillard, 2009) 100.00 99.67 97.46 91.94
Pop(30) (Alvim and Taillard, 2009) 100.00 99.67 97.72 92.54
Pop(70) (Alvim and Taillard, 2009) 100.00 99.67 97.73 92.58
Tabu(50n) (Alvim and Taillard, 2009) 100.00 99.57 97.53 91.54
Tabu(100n) (Alvim and Taillard, 2009) 100.00 99.57 97.54 91.54
Tabu(500n) (Alvim and Taillard, 2009) 100.00 99.57 97.55 91.59
Column Generation (Ribeiro and Lorena, 2008b) 100.00 99.67 97.67 92.40
LagClus (Ribeiro and Lorena, 2008b) 100.00 99.67 97.65 91.42
GRASP(6) (Cravo et al, 2008) 100.00 99.67 97.72 92.20
GRASP(5) (Cravo et al, 2008) 100.00 99.67 97.70 92.02
CGA (Yamamoto and Lorena, 2005) 100.00 99.60 97.10 90.70
Tabu Seach (Yamamoto et al, 2002) 100.00 99.26 96.76 90.00
GA with masking (Verner et al, 1997) 99.98 98.79 95.99 88.96
GA (Verner et al, 1997) 98.40 92.59 82.38 65.70
Simulated Annealing (Christensen et al, 1995) 99.90 98.30 92.30 82.09
3-opt Gradient Descent (Christensen et al, 1995) 99.76 97.34 89.44 77.83
2-opt Gradient Descent (Christensen et al, 1995) 99.36 95.62 85.60 73.37
Gradient Descent (Christensen et al, 1995) 95.47 86.46 72.40 58.29
Greedy Algorithm (Christensen et al, 1995) 88.82 75.15 58.57 43.41

* The optimal was proven.
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